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Weight space structure and the storage capacity of a fully connected committee machine
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~Received 10 June 1997!

We study the storage capacity of a fully connected committee machine with a large numberK of hidden
nodes. The storage capacity is obtained by analyzing the geometrical structure of the weight space related to
the internal representation. By examining the asymptotic behavior of order parameters in the limit of largeK,
the storage capacityac is found to be proportional toKAlnK up to the leading order. This result satisfies the
mathematical bound given by Mitchison and Durbin@Biol. Cybern. 60, 345 ~1989!#, whereas the replica-
symmetric solution in a conventional Gardner approach@Europhys. Lett.41, 481 ~1987!; J. Phys. A21, 257
~1988!# violates this bound.@S1063-651X~97!02310-6#

PACS number~s!: 87.10.1e, 05.50.1q, 64.60.Cn
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Since Gardner’s pioneering work on the storage capa
of a single-layer perceptron@1#, there have been numerou
efforts to use the statistical-mechanics formulation to stu
feed-forward neural networks. The storage capacity
multilayer neural networks has been of particular intere
together with the generalization problem. Barkai, Hans
and Kanter@2# studied a parity machine with a nonoverla
ping receptive field of continuous weights within a one-s
replica symmetry breaking~RSB! scheme and their resu
agrees with a mathematical bound previously found
Mitchison and Durbin@3#. Subsequently Barkai, Hansel, an
Sompolinsky@4# and Engelet al. @5# have studied the com
mittee machine, which is closer to the multilayer percept
architecture and is most frequently used in real-world ap
cations. Though they have derived many interesting res
particularly for the case of a finite number of hidden units
was found that their the replica-symmetric~RS! result vio-
lates the Mitchison-Durbin~MD! bound in the limit where
the number of hidden unitsK is large.

Recently, Monasson and O’Kane@6# proposed a
statistical-mechanics formalism that can analyze the we
space structure related to the internal representations of
den units. It was applied to single-layer perceptrons@7–9# as
well as multilayer networks @10–12#. Monasson and
Zecchina@10# have successfully applied this formalism
the case of both committee and parity machines with n
overlapping receptive fields~NRFs! @10#. They suggested
that analysis of the RS solution under this statistic
mechanics formalism can yield results just as good as
one-step RSB solution in the conventional Gardner meth

In this paper we apply this formalism for a derivation
the storage capacity of a fully connected committee mach
which is also called a committee machine with overlapp
receptive field and is believed to be a more relevant ar
tecture. In particular, we obtain the value of the critical st
age capacity in the limit of largeK, which satisfies the MD
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bound. It also agrees with a recent one-step RSB calcula
using the conventional Gardner method, to within a sm
difference of a numerical prefactor@13#. Finally, we will
briefly discuss the fully connected parity machine.

We consider a fully connected committee machine withN
input units, K hidden units, and one output unit, whe
weights between the hidden units and the output unit are
to 1. The network maps input vectors$xi

m%, where
m51, . . . ,P, to outputym as

ym5sgnS (
j 51

K

hj
mD 5sgnF (

j 51

K

sgnS (
i 51

N

Wji xi
mD G , ~1!

whereWji is the weight between thei th input node and the
j th hidden unit.hj

m[sgn((i51
N Wjixi

m) is the j th component of
the internal representation for input pattern$xi

m%. We con-
sider continuous weights with spherical constrai
( i

NWji 5N.
Given P5aN patterns, the learning process in a layer

neural network can be interpreted as the selection of cell
the weight space corresponding to a set of suitable inte
representationsh5$hj

m%, each of which has a nonzero e
ementary volume defined by

Vh5Tr$Wji %)m QS ym(
j

hj
mD)

m, j
QS hj

m(
i

Wji xi
mD , ~2!

whereQ(x) is the Heaviside step function. Gardner’s vo
umeVG , that is, the volume of the weight space that satisfi
the given input-output relations, can be written as the sum
the cells over all internal representations

VG5(
h

Vh . ~3!

The method developed by Monasson and his collabora
@6,10# is based on the analysis of the detailed internal str
ture, that is, how Gardner’s volumeVG is decomposed into
elementary volumesVh associated with a possible intern
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4540 © 1997 The American Physical Society



e

op
l
a-

the

ol-

ro-
ty.
-

d

56 4541WEIGHT SPACE STRUCTURE AND THE STORAGE . . .
representation. The distribution of the elementary volum
can be derived from the free energy

g~r !52
1

Nr KK lnS (
h

Vh
r D LL , ~4!

where ^^ && denotes the average over patterns. The entr
N@w(r )# of the volumes whose average sizes are equa
w(r )521/N ln^^Vh&& can be given by the Legendre rel
tions

N@w~r !#52
]g~r !

]~1/r !
, w~r !5

]@rg~r !#

]r
, ~5!
s

y
to

respectively.
The entropiesND5N@w(r 51)# andNR5N@w(r 50)#

are of most importance and will be discussed below. In
thermodynamic limit, 1/N^^ ln(VG)&&52g(r51) is dominated
by elementary volumes of sizew(r 51), of which there are
exp(NND). Furthermore, the most numerous elementary v
umes have the sizew(r 50) and number exp(NNR). The
vanishing condition for the entropies is related to the ze
volume condition forVG and thus gives the storage capaci
We focus on the entropyND of elementary volumes domi
nating the weight spaceVG .

The replicated partition function for the fully connecte
committee machine reads
ights.
akes this

e

e same
KK S (
h

Vh
r D nLL 5KK Trh

j
maTrW

j
ma)

m,a
QS (

j
hj

maD )
m, j ,a,a

QS hj
ma(

i
Wji

aaxi
mD LL , ~6!

with a51,...,r anda51,...,n. Unlike Gardner’s conventional approach, we need two sets of replica indices for the we
For a fully connected machine, the overlaps between different hidden units should be taken into account, which m

problem much more difficult than the treelike~NRF! architecture studied in Ref.@10#. We introduce the order parameters

Qjk
abab5

1

N (
i

Wji
aaWki

bb , ~7!

where the indicesa,b originate from the integer powerr of elementary volumes anda,b are the standard replica indices. Th
replica symmetry ansatz leads to five order parameters as

Qjk
abab55

q* ~ j 5k, a5b, aÞb!

q ~ j 5k, aÞb!

c ~ j Þk, a5b, a5b!

d* ~ j Þk, a5b, aÞb!

d ~ j Þk, aÞb!,

~8!

whereq* and q are, respectively, the overlaps between the weight vectors connected to the same hidden unit of th
(a5b) and different (aÞb) replicas corresponding to the two different internal representations. The order parametersc, d* ,
andd describe the overlaps between weights that are connected to different hidden units, of whichc andd* are the overlaps
within the same replica, whereasd correlates different replicas.

Using a standard replica trick, we obtain

g~r !5Extrq,q* ,c,d,d* H 2
1

2 F ~K21!~q2d!

12q* 1r ~q* 2q!2@c2d* 1r ~d* 2d!#
1

K21

r
ln$12q* 1r ~q* 2q!2@c2d* 1r ~d* 2d!#%

1
q1~K21!d

12q* 1r ~q* 2q!1~K21!@c2d* 1r ~d* 2d!#
1

1

r
ln$12q* 1r ~q* 2q!1~K21!@c2d* 1r ~d* 2d!#%1~K21!

3S 12
1

r D ln~12q* 2c1d* !1S 12
1

r D ln@12q* 1~K21!~c2d* !#G
2

a

r E Dt5E )
j

Dt3
j lnFTrhj

QS (
j

hj D E Dt4E )
j

Dt1
j S E Dt2)

j
H~V j ! D r G J , ~9!

where we have posedDx5exp(2x2/2)dx/A2p, H(y)5*y
`Dx, and

V j5
Aq* 2q2d* 1d t1

j 1~Ac2d* t21Aq2d t3
j 1Ad* 2d t41Ad t5!hj

A12q* 1d* 2c
. ~10!
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One may notice that the free energy evaluated atr 51 is reduced to the RS results obtained by the conventional method o
committee machine@4,5#, which is independent ofq* andd* . This means that the internal structure of the weight spac
overlooked by conventional calculation of Gardner’s volume. When we take the limitr→1, the free energy in Eq.~9! can be
expanded as

g~r ,q* ,q,c,d* ,d!5g~1,q,c,d!1~r 21!
]g~r ,q* ,q,c,d* ,d!

]r U
r 51

. ~11!

As noticed,g(r ,q* ,q,c,d* ,d) is the same as the RS free energy in Gardner’s method. From the relation

ND52
]g~r !

]~1/r !
U

r 51

5
]g~r !

]r U
r 51

, ~12!

we obtain the explicit form ofND as

ND5
1

2 F ~K21!~q2d!@q* 2q2~d* 2d!#

~12q2c1d!2 1~K21!ln@12q2~c2d!#2
~K21!@q* 2q2~d* 2d!#

12q2~c2d!

1
@q1~K21!d#@q* 2q1~K21!~d* 2d!#

@12q1~K21!~c2d!#2 2~K21!ln~12q* 2c1d* !

2 ln@12q* 1~K21!~c2d* !#1 ln@12q1~K21!~c2d!#2
q* 2q1~K21!~d* 2d!

12q1~K21!~c2d! G

2aE Dt5E )
j

Dt3
j

Trhj
QS (

j
hj D E Dt4E )

j
Dt1

j E Dt2)
j

H~V j !lnF E Dt2)
j

H~V j !G
Trhj

QS (
j

hj D E Dt4)
j

H~V j8!

1aE Dt5E )
j

Dt3
j lnFTrhj

QS (
j

hj D E Dt4)
j

H~V j8!G , ~13!

with

V j85
Ac2d t41Aq2d t3

j 1Adt5

A12q1d2c
. ~14!

In the case of the NRF committee machine, where each of the hidden units is connected to different input units, w
observe a phase transition. A single solution is applicable for the whole range ofa. In contrast, the phase-space structure
the fully connected committee machine is more complicated than that of the NRF committee machine. When a small
of input patterns are given, the system is in the permutation-symmetric~PS! phase@4,5,14,15#, where the role of each hidde
unit is not specialized. In the PS phase, Gardner’s volume is a single connected region. The order parameters assoc
different hidden units are equal to the corresponding ones associated with the same hidden unit. When a critical n
patterns is given, Gardner’s volume is divided into many islands, each one of which can be transformed into o
permutation of hidden units. In the case of generalization problem@14#, this is accompanied by the specialization of the hidd
nodes and their receptive fields. This phenomenon is called permutation symmetry breaking~PSB!. It induces a first-order
phase transition and discontinuity of the learning curve. In the storage capacity problem, specialization of the role
hidden unit is less obvious. However, separation of Gardner’s volume characterizes the onset of specialization amon
nodes, which leads to a better storage capacity. It has already been pointed out that the critical storage capacity is a
the PSB phase@4,5# and our recent one-step replica symmetry breaking calculation confirmed this picture@13#. Therefore, we
will focus on the analysis of the PSB solution near the storage capacity, in whichq* ,q→1 andc, d* , andd are of order 1/K.

In particular,q(r 51), c(r 51), andd(r 51) are reduced to the usual saddle-point solutions of the replica-symm
expression of Gardner’s volumeg(r 51) @4,5#. WhenK is large, the trace over all allowed internal representations ca
evaluated similarly to Ref.@4#. The saddle-point equations forq* andd* are derived from the derivative of the free energy
the limit r→1, as in Eq.~11!. The details of the self-consistent equations are not shown for space consideration.
following, we only summarize the asymptotic behavior of the order parameters for largea:

12q1d2c;
128

~p22!2

K2

a2 , ~15!
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12q1~K21!~c2d!;
32

p22

K

a2 , ~16!

q1~K21!d;
p22

a
, ~17!

12q* 1d* 2c;
p2G2

2a2 , ~18!

12q* 1~K21!~c2d* !;
p2G2

2a2 , ~19!

whereG52@Ap*duH(u)ln H(u)#21.0.62.
It is found that all the overlaps between weights connecting different hidden units have scalings of21/K, whereas the

typical overlaps between weights connecting the same hidden unit approach one. The order parametersc, d, and d* are
negative, showing antiferromagnetic correlations between different hidden units, which implies that each hidden unit
to store patterns different from those of the others@4,5#.

Finally, the asymptotic behavior of the entropyND in the large-K limit can be derived using the scalings given above. N
the storage capacity,ND can be written, up to the leading order, as

ND.
1

2 F K

12q
1K ln~12q!2K ln~12q* 2c1d* !G1aE Dt5E )

j
Dt3

j lnFTrhj
QS (

j
hj D E Dt4)

j
H~V j8!G

.
1

2 F K

12q
12K ln

K

a
22K ln

1

a G2
~p22!2

128

a2

K

.K ln K2
~p22!2a2

256K
. ~20!
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Being the entropy of a discrete system,ND cannot be nega
tive. Therefore,ND50 gives an indication of the uppe
bound of storage capacity, that is,ac; @16/(p22)# KAlnK.
The storage capacity per synapse 16/(p22)AlnK, satisfies
the rigorous bound; lnK derived by Mitchison and Durbin
@3#, whereas the conventional RS result@4,5#, which scales as
AK, violates the MD bound.

Recently, we have studied this problem using a conv
tional Gardner approach in the one-step RSB scheme@13#.
The result yields the same scaling with respect toK, but a
coefficient smaller by a factor&. In the present paper, w
are dealing with the fine structure of version space relate
internal representations. On the other hand, the RSB ca
lation seems to handle this fine structure in association w
symmetry breaking between replicas. Although the phys
of the two approaches seems to be somehow related, it is
clear which of the two can yield a better estimate of t
storage capacity. It is possible that the present RS calcula
does not properly handle the RSB picture of the syste
Monasson and his co-workers reported that the Almei
Thouless instability of the RS solutions decreases with
creasingK, in the NRF case@10,11#. A similar analysis for
the fully connected case certainly deserves further resea
On the other hand, the one-step RSB scheme also introd
an approximation and possibly cannot fully explain t
weight space structure associated with internal represe
tions.

It is interesting to compare our result with that of the NR
committee machine along the same lines@10#. Based on the
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-
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conventional RS calculation, Engelet al. suggested that the
same storage capacity per synapse for both fully conne
and NRF committee machines will be similar, as the over
between the hidden nodes approaches zero@5#. While the
asymptotic scaling with respect toK is the same, the storag
capacity in the fully connected committee machine is lar
than in the NRF one. It is also consistent with our result fro
one-step RSB calculation@13#. This implies that the smal
but nonezero negative correlation between the weights a
ciated with different hidden units enhances the storage
pacity. This may be good news for those people using a fu
connected multilayer perceptron in applications.

From the fact that the storage capacity of the NRF pa
machine is lnK/ln2 @2,10#, which saturates the MD bound
one may guess that the storage capacity of a fully conne
parity machine is also proportional toK lnK. It will be inter-
esting to check whether the storage capacity per synaps
the fully connected parity machine is also enhanced co
pared to the NRF machine. Our recent calculation of
fully connected parity machine seems to support this exp
tation @16#.
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